
Audio Restoration:
An Investigation of Digital Methods for
Click Removal and Hiss Reduction

Joseph Nuzman
jnuzman@gmail.com

March 29, 2004

Abstract

This paper investigates methods for restoring, in the digital do-
main, audio signals that have been corrupted by noise. Experiments
are performed to explore existing techniques and point to possible
enhancements. For the purposes of click removal, methods based on
autoregressive time series modeling are considered. For hiss reduction,
short-time spectral attenuation is considered in the form of standard
spectral subtraction as well as Ephraim and Malah enhancements.
Successful audio restoration of real degraded audio is demonstrated.

1 Introduction

Digital noise reduction for audio signals has been an area of investigation
since computers became powerful enough to manipulate digital audio in a
practical way. The basis for many of the methods described here were mo-
tivated by applications in the speech recognition domain. Subsequent en-
hancements and generalizations have been motivated by the stricter fidelity
requirements of commercial and archival restoration of old recordings.

The survey of methods in this paper is motivated by two applications:

The restoration of a degraded copy of a commercial recording. An
individual may own a copy of an out-of-print commercial recording.
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The degradation may be an artifact of the recording (all forms of ana-
log recording exhibit hiss noise), or a result of corruption of fragile
media (eg. scratches on a phonograph). When transferring such a
recording to a modern digital format, there is an opportunity to reduce
these unwanted artifacts. Without access to the undegraded original,
an individual needs to make use of audio restoration of the copy.

The restoration of a personal recording. An individual may possess a
personal recording that represents the only available record of an event.
Degradation of the audio signal may be a result of the limitations of
commonly available recording media, limitations of inexpensive record-
ing equipment, or errors in the operation of the recording equipment.
Audio restoration can help to improve such recordings.

In these two applications, both the nature of the degradations and the quality
of restoration desired are very similar to those of commercial and archival
restoration. However, the latter applications may suppose an experienced
and knowledgeable restoration engineer, who can afford to spend time tuning
a method to a particular recording. In contrast, processes for our applications
should be as automated as possible, and not require extensive knowledge or
tuning.

This paper will focus on effective techniques for the restoration of audio
signals degraded by impulsive clicks or by broadband hiss. Processing will
be performed off-line, so computational performance of the methods will
not be of primary importance. The implementation of the various methods
considered will emphasize clarity and correctness over performance wherever
practical.

It is intended that a practical system addressing our two applications
could be straightforwardly developed from this paper.

The bulk of this paper is divided into two (mostly independent) sections.
Section 2 explores the process of click removal, and section 3 investigates hiss
reduction.

Please refer to Appendix A for information about accessing the audio
samples and program code referenced in this paper.
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2 Click Removal

The term clicks refers to localized bursts of impulsive noise present in an
audio signal. Clicks are commonly caused by particles or scratches on the
surface of a phonograph record. They may be observed as quiet distinct
ticks, louder pops, or as a crackling sound.

This section investigates time series modeling of audio signals, detection of
click noise, and correction of identified clicks. Click removal is demonstrated
for both artificial and real corruption, and possible future research directions
are suggested.

The evaluations in this section specifically focus on the removal of clicks
from 33 RPM long play phonograph records, where clicks are primarily the
result of scratches or debris on the medium. That said, the methods used
in this section would also likely be effective for removing impulsive noises
introduced by other mechanisms.

Throughout this section, we make use of formulas and notation from [8].

2.1 Modeling

For all the methods we will explore, we will make use statistical modeling of
audio signals to help in the process of click removal. If we can characterize
well the desired audio signal, we can hope to distinguish the unwanted noise.

2.1.1 Autoregressive modeling

An example of a short sequence from an audio waveform is illustrated in
Figure 1. This 44.1 kHz clip is taken from a professionally recorded compact
disc track [2] featuring vocals, guitar, bass, dobro, and mandolin.

A fundamental model that we will use is the autoregressive (AR) model.
In this model, an audio signal is considered to be the output of a linear
time-invariant all-pole filter applied to a white noise process. Each output
sample xn of the output process can be considered to be the weighted sum
of a limited number of previous samples plus a single sample en from the
random white noise process.

xn =
P∑
i=1

aixn−i + en (1)
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Figure 1: Example audio waveform

Here, P is referred to as the order of the AR process x. The P coefficients ai
are referred to as the AR coefficients. The transfer function for the all-pole
filter is:

H(z) =
1

A(z)

where

A(z) = 1−
P∑
i=1

aiz
−i

The white noise process is variously called the innovations or excitation pro-
cess due to its role in the conceptual synthesis of the AR process. When
equation (1) is instead considered as a predictor, the term prediction error
sequence is often used for the ei.

The choice of the autoregressive model is motivated by two factors:

• The random source with filter model correlates closely to the physical
production of many audio signals. The mechanism of a human voice,
for example, can be considered random excitations shaped or filtered
by the physical characteristics of the speaker.

4



• Assumptions of a finite-parameter all-pole filter and of Gaussian white
excitation allow for straightforward analysis in many cases. More so-
phisticated models, such as the autoregressive moving-average (ARMA)
model, may also be excellent models of audio processes, but can be more
difficult to analyze or can present numerical problems. Note that a
finite-order AR process can be constructed to approximate any ARMA
process arbitrarily well, although possibly using more coefficients.

We will see that the stationary Gaussian AR model can be a very good fit
for short blocks of the audio signals considered here.

If we are given a block of N samples and wish to estimate the coefficients
ai of the AR model of order P , it is useful to reformulate (1) in matrix
notation. We are given the vector x:

x =
[
x1 x2 · · · xN

]T
and wish to estimate the parameter vector a:

a =
[
a1 a2 · · · aP

]T
We form the autoregressive matrix G from x as:

G =


xP xP−1 · · · x2 x1
xP+1 xP · · · x3 x2

...
...

. . .
...

...
xN−2 xN−3 · · · xN−P xN−P−1

xN−1 xN−2 · · · xN−P+1 xN−P


We use the convention that x0 is the first P samples of x and x1 is the
remaining N − P samples, such that:

x =

[
x0

x1

]
We are now prepared to rewrite (1) as:

x1 = Ga + e (2)

The innovations vector e corresponds to:

e =
[
eP+1 eP+2 · · · eN

]T
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Figure 2: Audio waveform and innovation sequence

An estimate for a can be produced by minimizing e in the least squares
sense. This estimate is known as the covariance estimate:

a = (GTG)−1GTx1

If the innovations process is assumed to be zero-mean Gaussian, it can be
shown (see [8]) that this estimate is equivalent to choosing the a which max-
imizes the likelihood of x1 given a and x0. If N >> P then this probability
is an approximation of the likelihood of the full x given a. Note that, while
the likelihood depends on the variance σ2

e of the excitation sequence, the
maximization (and hence the estimator) does not.

To give an idea of how an excitation sequence might compare to the
original audio if corresponds to, both are plotted in Figure 2. This uses the
same audio clip from [2]. Coefficients for an AR model of order P = 15 are
estimated using least squares over a window of length 1024. The inverse filter
is then applied to produce the excitation sequence shown.
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2.1.2 Sinusoid extensions

Another possible model of audio signals is as the sum of deterministic bases.
This model, where the bases are complex exponentials, is at the heart of
Fourier analysis.

For general audio, the AR model tends to better match the inherent
randomness of the signal. However, many musical examples exhibit a strong
tonal nature. With such signals, a limited-order AR model can miss much
of the long-term correlation present. It is often possible to select a few fixed
basis vectors (perhaps sinusoids of particular frequencies) that can be linearly
combined to model the majority of the signal. The remaining randomness
can then be modeled using the AR approach.

This combined AR/sinusoid method can be expressed as:

xn =

Q∑
i=1

ciψi[n] + rn (3)

where Q is the number of basis vectors and ψi[n] is the nth element of the
fixed basis vector ψi. The residual is treated as an AR process:

rn =

Q∑
i=1

airn−i + en

Selecting the basis vectors ψi becomes part of the parameter estimation
problem, along with the determination of the coefficients ci and ai. One
choice is to select Q/2 frequencies ωi, and then create basis vector pairs
ψ2i−1 = cos(ωinT ) and ψ2i = sin(ωinT ). These pairs can be linearly com-
bined to create an arbitrary amplitude and phase sinusoid at frequency ωi.
A very simple choice for the ωi are the frequencies corresponding to the Q/2
bins of the discrete Fourier transform of the signal with maximum amplitudes
[8].

It is straightforward to find the basis coefficients which minimize the
residual in a least squares sense. We rewrite equation (3) in matrix notation:

x = Gc + r (4)

where G is now the basis vector matrix:

G =
[
ψ1 ψ2 · · · ψQ

]
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Figure 3: Audio waveform and sinusoid approximation

The least squares estimator is given by:

c = (GTG)−1GTx

Substituting this c into equation (4) yields the residual r, which can be
treated as an AR process as before.

Figure 3 illustrates the sinusoid modeling. A model with Q = 31 basis
vectors was used to approximate the waveform from [2]. The vectors corre-
sponded to DC plus the 15 highest amplitude frequencies from the short-time
DFT. A window size of 1024 was used.

2.1.3 Modeling experiments

To provide an idea of how well the AR/sinusoid model can fit real audio
consider Figure 4. Here the ratio of average residual power to average signal
power is plotted for values of P and Q ranging between 0 and 121. The audio
sample used is 5.5 seconds from the same source as before [2]. In all cases,
the AR/sinusoid parameters were estimated for each block of 1024 samples.
It is evident that even an AR order of P = 5 models the data quite well,
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Figure 4: Residual to signal power ratio for various values of P and Q

with a power reduction of around 30 decibels. To provide a better look at the
contour of the flatter region, Figure 5 clamps the graph above −30 decibels.

The choice of block sizes for the AR and sinusoid modeling must be such
that the simplifying assumption of stationarity is valid. When the modeling is
applied to noisy data, the block sizes should be large enough that a localized
degradation does not exhibit too much influence on the parameter estimation
for a block.

In general the block sizes for AR coefficient estimation, sinusoid coefficient
estimation, and sinusoid frequency selection, as well as the granularity of
frequency selection, can all be independently chosen. For these experiments,
the AR coefficients, the sinusoid coefficients, and the sinusoid frequencies are
estimated for each fixed-size block. Furthermore, the granularity of frequency
selection is determined by the granularity of the FFT of a block.

In Figure 6, the power residual to signal ratio is plotted for several choices
of block size. P and Q are both fixed at 31. The graph exhibits somewhat
of a knee at 12 = log2(4096). (The up-tick at 7 = log2(128) can be explained
by the details of implementation. In order to produce forward and backward
prediction error values for every sample in a block, estimation is actually
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Figure 7: Histogram of normalized residual values

performed using the samples in the block plus the P samples before and the
P samples after. The fact that the minimization applies to more than just the
block becomes more significant with smaller block sizes. It does not appear
the up-tick is related to the granularity of the FFT.) This graph can provide
some insight into the stationarity of the audio. Assume that an audio sample
can be considered stationary across a block of a particular size. In this case
we’d expect the residual power to increase by a relatively small amount when
the same parameters are used across the whole block, versus the residuals of
the two halves of the block with independently estimated parameters.

Recall that an assumption of our model is that the innovations sequence
is Gaussian white noise. Rather than rigorous testing of this hypothesis,
we just present a couple demonstrations from real data. We consider the
residual resulting from estimating an AR/sinusoid model with P = 31 and
Q = 31 with a block size of 1024 samples. Each block of the sequence is
independently normalized to a variance of one. The histogram plotted in
Figure 7 presents a beautiful Gaussian curve (plotted against the theoretical
normal curve).

As an illustration of the whitening effect, Figure 8 plots the estimated
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Figure 8: Estimated power spectrum of residual

power spectrums of the original audio and the normalized residual. The
power spectrum was estimated using a time-averaged short-time DFT of
1024 sample width.

When considering the modeling results presented here, one should be
careful about drawing conclusions:

• All the results were reached from a single audio sample. Producing
more general results would require testing with many more types of
audio. A complex orchestral recording, for example, might demand a
higher AR order to achieve good results.

• Noise corrupted audio will exhibit different behavior than the clean
sample used here. Broadband noise could raise the noise floor, broad-
ening the area where increasing model order yields diminishing returns.

• The end goal is more than modeling a clean audio signal. From Figure4
it would appear that sinusoid modeling yields relatively little benefit if
the AR model is sufficiently high. However, interpolation of large miss-
ing gaps (see section 2.3) can be significantly improved with sinusoid
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modeling. Also, estimation for the sinusoid model might prove more
robust to localized clicks.

2.2 Detection

In section 2.1 we established models that fit clean audio signals. The next
step is to identify corrupted samples within noise-degraded audio.

2.2.1 Noise modeling

For detection of clicks, we assume an additive noise model. In this model,
the corrupted audio process yt is the sum of an underlying clean AR/sinusoid
process xt and an additive noise process. Because clicks are a localized dis-
turbance, we allow the noise process to take on nonzero values only at certain
times. For the purposes of click detection, background noise will be assumed
zero at other times. We can formulate this model as:

yt = xt + itnt

The combined process itnt represents the localized noise process. The binary-
valued process is 1 when a click is present, and 0 when a click is not present.
The process nt represents the additive amplitude of the click when it is 1.
The procedure of click detection can be defined as estimating the process it.

From observing real click degradations, it is possible to describe some
of the characteristics of the noise process. Both it and nt are assumed to
be independent of xt. However, they may be highly correlated. Individual
samples of it cannot be considered to be independently distributed, as the
noise tends to occur in bursts. Such bursts are observed to typically be
between 1 and 200 samples in length for 44.1 kHz audio [8]. The amplitude
of clicks, and hence of nt can vary greatly. It is observed that often the
amplitude of a click need not be large relative to the signal amplitude in
order to be noticeable to a listener.

While it is possible to try to model all these characteristics of the noise,
the simplest detection methods only make use of the assumed independence
of the noise from the original signal. If we apply an inverse filter based on
the AR/sinusoid model of xt, we produce a prediction error residual process.
The expectation is that the power from xt should be significantly reduced
(perhaps 30 dB), but that the clicks should be largely unaffected. Thus,
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the clicks are highly amplified relative to the underlying audio, and may be
detected by simply thresholding the prediction error.

2.2.2 Parameter estimation

The first difficulty when applying this method of click detection is that the
parameters of the underlying process xt are unknown. One simple method
of estimation is simply to use the standard estimation techniques on the cor-
rupted process yt. However, for AR estimation at least, Kleiner and Martin
[10] have shown that AR estimates can be greatly affected by even relatively
low amplitude impulsive noise.

They propose a scheme based on iterated weighted least squares to fit an
AR model to the data that is robust to additive impulsive noise. With an
improved parameter estimate, we would expect better detection performance.

As a kind of limit study as to the benefit of robust estimation procedures,
we perform the following experiment. Parameter estimation is performed di-
rectly on a clean audio sample. Then, the audio is artificially corrupted with
click-type noise.1 Parameter estimation is also performed directly on the cor-
rupted waveform. Then, two prediction error sequences are produced from
the corrupted audio. One sequence, the noisy estimate, uses model param-
eters estimated directly from the corrupted data. This represents the result
of using the most straightforward method. Another sequence, the perfect es-
timate, uses the “true” model parameters estimated from the original audio.
This is to represent a hypothetical ideal robust estimator.

We also produce a third prediction error sequence. This sequence, the
previous estimate, approximates a method that takes advantage of the pre-
sumed short-term stationarity of the audio. It is assumed that the audio is
cleaned block-by-block, and that model estimates are performed on a cleaned
block before moving to the next block. The “clean” model estimate from the
previous block is used to produce the error sequence for the current block.

1 The noise generation is based on an explicit noise model used for some advanced click
detection techniques [8]. The noise switching process it is considered to be a two-state
Markov chain process. The zero state indicates no noise; the one state indicates noise
present. The process it transitions from state 0 to 1 with probability 0.07, and from 1 to 0
with probability 0.35. The noise samples nt are modeled as independent Gaussian variables
with time-varying variance σnt . Each σnt is sampled from the heavy-tailed inverse gamma
distribution with parameters α = 0.8 and β = 10000. The resulting noise itnt is scaled by
1/32728 and the noisy data yt is capped to an amplitude of 1.
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forward minimum
noisy estimate 8.63 17.04
previous estimate 4.71 28.85
perfect estimate 5.81 72.15

Table 1: Ratio of MS prediction error of corrupted to uncorrupted samples

This technique is approximated for these experiments by using at each block
the perfect estimate model for the previous block.

To provide some insight into the noise amplification of different proce-
dures (without introducing any hard thresholds), we construct the ratio of
mean squared amplitudes of corrupted to uncorrupted samples from the pre-
diction error sequence. These values are plotted in the first column of Table 1.
All experiments were performed with a block size of 1024 and model orders
of P = 31 and Q = 31. Each block was independently normalized before pro-
ducing mean squared estimates. The normalization was based on a robust
estimator σ̂ for the standard deviation of the sequence [10]:

σ̂ = median(|ei|)/0.6745

This estimator is robust to outliers, and is non-biased in the case of a zero-
mean Gaussian distribution for the ei.

We would expect a larger ratio to allow for better click detection. Cu-
riously, the perfect estimate method yields a lower ratio than the simplest
method. It turns out that the mean squared amplitude of the “uncorrupted”
prediction error samples is dominated by those immediately following “cor-
rupted” samples. This can be explained by considering the auto-regressive
equation (1). When producing the prediction error, the additive noise affects
the sample where it occurs, as well as the P samples following. Thus, we
observe a smearing effect that hampers localization and throws off our noise
amplification metrics.

Note that smearing of the prediction error sequence occurs only in the
samples immediately after a corrupted audio sample. It is possible to take
a given AR model, reverse the coefficients, and apply a filter backwards to
produce a backwards prediction error sequence. We would expect to see the
smearing effect also in this sequence, however the smearing would only be
evident in the samples immediately prior to a corrupted audio sample.
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It is possible to combine the forward and backward prediction error se-
quences to yield better detection localization. One simple method is to take
the minimum amplitude prediction error between the forward and backward
values at a given sample. The intuition is that corrupted samples should be
high amplitude in both sequences, while the smearing should only appear
in one or the other at a given position. The improved localization for all
estimation methods is evident in the second column of Table 1. Also, we see
a potential for detection improvements with either previous block or robust
estimation methods.

2.2.3 Noise identification

In a practical detection system, a decision must made as to whether each
sample is corrupted or uncorrupted. For this we use a threshold to flag
samples with prediction error beyond a certain magnitude. The threshold is
chosen relative to the standard deviation of the prediction error sequence for
a block (or a robust estimate of the uncorrupted standard deviation). It is
straightforward, then, to calculate the likelihood of false positive detections in
the case of uncorrupted Gaussian excitation. The likelihood of false positives
(and of course of false negatives) in the presence of noise will depend on the
characteristics of the noise and of the AR model.

Although we have emphasized localization of the click noise, in practice
we will want to “spread” the detections. In the correction stage, all sam-
ples not marked as corrupted will be fixed at their original value. If a false
negative appears in the middle of a click sequence, it can be impossible to
eliminate the noise in the correction stage. Simple pulse spreading tech-
niques can be applied to combat this problem. One method is to create a
“fattened” version of the original detection vector, where all samples within
some number of samples of a positive detection in the original vector are
flagged positive. It may be possible to refine such methods by taking ad-
vantage of the observation that the forward prediction error tends to define
the start of a click very well, while the backward detection error tends to
define the end of a click very well. In these experiments, we will use simple
symmetric spreading.

It is very difficult to define a useful metric for a given detection method.
Most useful metrics probably require the output of both the detection and
correction stages (see section 2.4). Here we will consider the likelihoods of
false positive and false negative detection for each sample.
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Figure 9: Proportion of false positives among uncorrupted samples

We perform some detection experiments with the same artificial corrup-
tion example as before. Straightforward parameter estimation is performed
on the noisy data, and the forward prediction error is used for detection.
In Figure 9, the proportion of false positive detections among uncorrupted
samples is plotted for various threshold and pulse spreading values. As ex-
pected, the false positives increase with decreasing threshold and increasing
pulse spread. Figure 10 illustrates the proportion of false negatives among
corrupted samples. (Note that this figure is rotated 180 ◦ relative to Fig-
ure 9.) False negatives increase with increasing threshold and decreasing
pulse spread.

The proportion of false positives and false negatives are plotted together
with the pulse spread fixed at 4 samples (Figure 11) and with the threshold
fixed at 2 (Figure 12).

2.3 Correction

After identifying which samples have been corrupted by impulsive noise, the
next step is to perform correction to eliminate the noise. While it is possible
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Figure 10: Proportion of false negatives among corrupted samples
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Figure 12: Proportion of false positive and false negative detections (thresh-
old = 2)

to try to model the additive noise process, we will simply consider corrupted
samples as missing data, and formulate the correction problem as interpo-
lation. Since typically only a small proportion of samples are corrupted, it
is usually possible to use the regularity of an audio sample to achieve high
quality restoration.

2.3.1 Least squares interpolation

For the purposes of interpolation, we will use a new form of the vector au-
toregressive equation (2). Suppose we are working with a length N block of
data x from an AR process. We form a N − P by N matrix A from the AR
vector a like so:

A =


−aP · · · −a1 1 0 0 · · · 0

0 −aP · · · −a1 1 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 −aP · · · −a1 1 0
0 · · · 0 0 −aP · · · −a1 1


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We can then express the prediction error sequence in terms of A and x:

e = Ax (5)

If i is the binary vector where a value of one indicates a missing sample,
then we partition x into two vectors. One, x(i), represents the missing val-
ues and the other, x−(i), represents the known values. We can perform the
corresponding partitioning of the columns of A such that (5) becomes:

e = A−(i)x−(i) + A(i)x(i)

Assume for the moment that the AR coefficients are known. Then, the
objective of the interpolation procedure is to estimate x(i), given x−(i), i, and
a. The least squares AR interpolator [8] is the estimator which minimizes
the sum squared of the prediction error e. This estimate is given by:

x(i) = −(A(i)
TA(i))

−1A(i)
TA−(i)x−(i)

In the case of Gaussian excitation, and if there is no missing data in the
first P samples of the block, the least squares interpolator maximizes the
likelihood of x(i) given x−(i) [8]. This restriction on the first P samples
is usually observed in practice by prepending the last P samples from the
previous de-noised data block.

The sinusoid model can also be incorporated into the interpolation pro-
cedure. The sinusoids can be filtered out of each block, AR interpolation
performed on the residual, and then the sinusoids reintroduced.

2.3.2 Iterative estimation

In practice, the AR coefficients and sinusoid parameters are unknown before-
hand. Part of the interpolation, then, is to estimate the modeling parameters
as well as the missing data. A simple method [8] to achieve this joint esti-
mation is to first choose some initial estimates for the model parameters and
the unknown data, and then to iteratively re-estimate the data and model
parameters sequentially. For an initial choice of the unknown data, it is
possible to simple use the corrupted audio, or initialize to zero. The model
parameters can be estimated directly from the initialized data. Alternatively,
robust estimation procedures may be useful, or a robust estimate from the
detection procedure may be available.
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It is possible to incorporate the sinusoid coefficient estimation simultane-
ous with the unknown data estimation stage, but such a formulation is not
explored here – each component is estimated sequentially.

Practical tests with this iterative block-based scheme reveal an important
implementation detail. If missing data occurs at the end of a block, data
beyond the block does not inform the estimation of the missing data. The
result can be a discontinuity which is assumed fixed during the next block
interpolation. The result can be an audible click, which wasn’t present even in
the uncorrected noisy audio. This artifact can be avoided by interpolating P
samples beyond the actual block end, and simply throwing away any samples
estimated from this extra portion before moving to the next block.

2.3.3 Performance

To test click removal performance, we will again use the clean signal with
artificial corruption as with click detection. The true noise presence vector
is used to indicate which samples are to be interpolated, simulating a perfect
detection process. To judge the convergence of the algorithm, the scheme is
iterated eight times at each block. Model parameters P = 31 and Q = 31
are used with a block size of 1024 samples.

Figure 13 plots the mean squared error of corrupted samples for each
iteration. For this example, the algorithm converges very quickly, stabilizing
after only two iterations. Informal listening tests indicate the interpolated
audio sequence to be indistinguishable from the original.

2.4 Demonstration

The full click removal process for a given block consists of performing se-
quentially the prediction error-based click detection, followed by the iterative
interpolation. This process is performed for each subsequent block to restore
the entire audio sequence.

2.4.1 Artificial corruption

When considering the full process, we may hope to find better metrics to
guide the choice of detection parameters. With this in mind, we return to
the clean audio with artificial corruption scenario we’ve used throughout this
section. In Figure 14 the ratio of squared error for processed audio to that
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Figure 13: MSE of corrupt data for each interpolation iteration

of the unprocessed corrupted audio is plotted for three choices of the pulse
spreading detection parameter. The lines represent a pulse spread of 2, 4, and
8 samples plotted for threshold values between 3 and 40. In all cases P = 31,
Q = 31, the block size is 1024 samples, and the number of interpolation
iterations is 3. The error ratio continues to ramp up quickly for threshold
values (not shown) less than 3. The error ratio for all three lines would reach
the value 1 if the threshold was chosen high enough that no samples were
flagged.

Informal listening tests reveal the limitations of mean squared error as a
click removal metric. The minimum MSE for the configurations tested was
a threshold of 5 and a pulse spread of 2 samples. Comparing the processed
audio2 to the degraded audio3 reveals that all the most noticeable clicks
and pops have been removed without any noticeable distortion to the original
signal4 . There does remain a small amount of (subtle) low-amplitude noise.
The configuration with a threshold of 3 and a pulse spread of 4 samples yields

2clicksamps/iwproc-50-02.wav (local, web)
3clicksamps/iwclicks.wav (local, web)
4source/iwoke.wav (local, web)
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Figure 14: Squared error ratio of processed audio to unprocessed audio (log
scale)

audio5 with almost all the low-amplitude noise removed, but with a small
amount of signal distortion. The choice between the two might be a subjec-
tive decision. However, the processed audio of the second configuration has
an error ratio well above 1, indicating it is worse than the original corrupted
audio by the MSE metric. It would seem that MSE criteria does not match
human perception particularly well.

2.4.2 Real examples

The gauge the subjective performance of these methods on real degraded
audio, click removal was performed on digital recordings made from 33 RPM
phonograph records. All processing was done with the same parameters:
P = 31, Q = 31, block size is 1024 samples, the threshold is 5, the pulse
spread is 4 samples, and the number of interpolation iterations is 3.

The first example is from a recording [6] featuring two male vocalists

5clicksamps/iwproc-30-04.wav (local, web)
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singing a cappella. The original sample6 contains medium-sized, well-spaced
pops. The restoration7 removes all audible pops with no audible distortion.

The second example is from an instrumental recording [11] featuring
horns, drums, and other percussive instruments. The original sample8 con-
tains fairly-constant low-level crackle, as well as the occasional pop. The
restoration9 successfully removes both crackle and pops, without noticeable
distortion.

The next example is from a recording [1] featuring a male vocalist ac-
companied by guitar and trombone. The original sample10 exhibits short
sections of rapid, high-amplitude clicks, probably correlated to the rotation
of the disc. Again, the restoration11 does a fine job of removing the degra-
dation without disturbing the signal.

The last example is from a recording [5] featuring a female vocalist accom-
panied by guitar. The original sample12 contains small amounts of bursty
click noise. In parts it also exhibits a low-level crackle-type noise that ap-
pears to correlate to high signal amplitude. The restoration13 removes the
individual clicks, and also reduces the correlated crackle to the point that it
is largely masked by the signal.

2.5 Future Directions

There are many opportunities for improvement within the framework de-
scribed in this section. One such area is implementing model estimation
techniques that are robust to impulsive noise. One suitable technique is to
perform estimation based on iterative weighted least squares. This involves
minimization with an influence curve (other than the typical quadratic) which
de-emphasizes the influence of outliers. Another possible technique is to in-
corporate model estimates from already de-noised data in previous blocks.

Once a model has been selected, detection accuracy may be improved by
more sophisticated use of both the forward and backward prediction error.

6source/tina.wav (local, web)
7clicksamps/tina-proc-50-04.wav (local, web)
8source/hatari.wav (local, web)
9clicksamps/hatari-proc-50-04.wav (local, web)

10source/brady.wav (local, web)
11clicksamps/brady-proc-50-04.wav (local, web)
12source/cali.wav (local, web)
13clicksamps/cali-proc-50-04.wav (local, web)

24

source/tina.wav
http://jnuzman.github.io/audio-restoration-2004/source/tina.wav
clicksamps/tina-proc-50-04.wav
http://jnuzman.github.io/audio-restoration-2004/clicksamps/tina-proc-50-04.wav
source/hatari.wav
http://jnuzman.github.io/audio-restoration-2004/source/hatari.wav
clicksamps/hatari-proc-50-04.wav
http://jnuzman.github.io/audio-restoration-2004/clicksamps/hatari-proc-50-04.wav
source/brady.wav
http://jnuzman.github.io/audio-restoration-2004/source/brady.wav
clicksamps/brady-proc-50-04.wav
http://jnuzman.github.io/audio-restoration-2004/clicksamps/brady-proc-50-04.wav
source/cali.wav
http://jnuzman.github.io/audio-restoration-2004/source/cali.wav
clicksamps/cali-proc-50-04.wav
http://jnuzman.github.io/audio-restoration-2004/clicksamps/cali-proc-50-04.wav


One simple technique to be investigated would involve asymmetric spread-
ing of the binary detection sequence corresponding to each prediction error
sequence. The forward detection sequence would spread towards increasing
time, while the backward detection sequence would spread towards decreas-
ing time. The final detection sequence would be the logical and of the two
spread sequences. In this way, the forward sequence clearly defines the start
of a click, and the backward sequence clearly defines the end.

The interpolation stage may also be improved, for example by constrain-
ing interpolation to a minimum innovation variance to prevent underestimat-
ing variance [8]. However, for the short interpolation lengths encountered in
click removal, the current scheme has worked quite well.

More recent work in this area has explored explicit noise modeling within
a fully Bayesian framework [8]. Such methods have the potential to perform
better than the more ad hoc methods considered here.

The methods studied here, as well as any extensions or alternative meth-
ods, require much more study in relation to both audio and noise with more
widely varying characteristics.

3 Hiss Reduction

Analog recordings of all types suffer from broadband noise to some degree.
Magnetic audio tape is one example that tends to exhibit highly stationary
broadband hiss noise. Hiss reduction attempts to attenuate the broadband
noise, without introducing unpleasant artifacts or signal degradation.

This section investigates short-time Fourier transform modeling of audio,
spectral noise suppression, residual noise conditioning, and the Ephraim and
Malah noise reduction method. Hiss reduction is demontrated for real exam-
ples of corrupted audio, and possible future research directions are suggested.

3.1 Modeling

In Section 2, the localized nature of click-type noise led us to use time-
domain methods such as auto-regressive modeling. For the purposes of hiss
reduction, we will employ frequency-domain methods. In particular, we will
make use of the assumption that hiss-type noise is long-term stationary. We
will also make use of the approximation that the audio signal itself is short-
term stationary.
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The observed noise yt will be written as:

yt = xt + dt

We assume here that the noise dt is additive and independent of the original
audio signal xt.

All noise suppression methods used here will make use of the short-time
discrete Fourier transform (STFT). The observed data yt is divided into
overlapping subframes of length N , with M < N being the distance between
the start of successive subframes. A STFT can be performed on each of
the subframes (after applying a windowing function) to produce the complex
STFT value Y (p, ωk) for the kth frequency bin (0 ≤ k < N) from subframe
p.

The representation Y (p, ωk) can be transformed back to the time series
representation yt by applying an inverse STFT to each subframe, and then
combining the results using overlap-add. A gain compensation function re-
stores the time domain sequence to the correct amplitude.

All the methods studied here will perform noise reduction on the Y (p, ωk)
representation before transforming back to the time domain. Every method
applies a positive real-valued gain G(p, ωk) to each bin of each subframe.

X̂(p, ωk) = G(p, ωk)Y (p, ωk)

Thus the phase of the restored audio components X̂(p, ωk) will be the same
as that of the corrupted audio. In fact, Ephraim and Malah have shown
[7] that, under certain assumptions, the phase of the observed data is the
minimum mean squared error (MMSE) estimator of the original phase.

It is claimed that the human ear is relatively insensitive to phase. To test
this claim as it relates to our purposes, we construct a perfect zero-phase
noise reduction filter. We take a clean audio signal from [2], and add Gaussian
white noise of variance 0.0015. We then perform the STFT transformation,
and scale each bin so that its amplitude is equal to the amplitude of the
corresponding bin of the uncorrupted signal. This ideal gain is:

G(p, ωk) =
|X(p, ωk)|
|Y (p, ωk)|

which ensures that |X̂(p, ωk)| = |X(p, ωk)|. From casual listening, it is diffi-
cult to distinguish the original sample14 from the perfect zero-phase recon-

14source/iwoke.wav (local, web)
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struction15 .
An important parameter to STFT analysis is the window size. Increased

window duration leads to increased spectral resolution. Analysis [4] has
shown that window durations of at least 40 to 50 ms are required to avoid
damage to quasi-stationary signal components in the presence of noise. How-
ever, increased window duration increases the spreading of sharp transients.
For many types of audio, the transient spreading is not noticeable with win-
dows well above 50 ms. However, some signals may exhibit transients that
are damaged using windows of greater than 40 ms duration. Uniform STFT
methods may not be suitable for such audio.

The window duration used throughout this section will be 2048 samples,
or 46 ms at 44.1 kHz. The Hanning window will be used for both the analysis
and synthesis windows. Windows will be overlapped by a factor of 4.

3.2 Spectral Noise Suppression

In practical noise suppression, we don’t know X(p, ωk) or D(p, ωk). Due
to the assumed stationarity of the noise, it is usually possible to deduce an
estimate for the noise spectrum. If a portion of the audio signal can be
identified which contains noise only (there is no signal, xt = 0), then an
estimate for the power spectrum Ŝd(ωk) can be obtained by averaging the
magnitude squared of the STFT bins for P subframes from the noise only
region:

Ŝd(ωk) =
1

P

∑
p

|Y (p, ωk)|2

Then, Ŝd(ωk) should approximate E{|D(p, ωk)|2} and can be used as an
estimate for |D(p, ωk)|2 in every subframe.

A noise only region can often be easily manually identified. It would
also be possible to attempt to automatically identify such a region, but this
possibility is not explored here.

Various noise suppression rules are used to set the gain function used for
spectral noise suppression. The simplest rules can be expressed as a function
of the ratio Q(p, ωk) of observed power to expected noise power for a given
bin.

Q(p, ωk) =
|Y (p, ωk)|2

Ŝd(ωk)
(6)

15clicksamps/iwideal.wav (local, web)
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The power spectral subtraction suppression rule subtracts the expected
noise power from the power spectrum. This is equivalent to estimating the
restored amplitude as the square root of the maximum likelihood estimator
for the signal variance in each bin [7]. The spectral gain G is given by:

G(p, ωk) =

√
1− 1

Q(p, ωk)

Another suppression rule is known as the Wiener filter. This rule es-
timates the restored amplitude as equal to the amplitude of the minimum
mean squared error estimator of the complex signal component for each bin
[7]. The spectral gain G is given by:

G(p, ωk) = 1− 1

Q(p, ωk)

This rule is simply the square of the power spectral suppression rule. Both
these rules clamp the lower gain limit at zero.

Figure 15 illustrates the effect of spectral noise suppression on the time
domain waveform. The top graph shows a section of clean audio. The middle
shows the same section corrupted with Gaussian white noise of variance 0.015.
The bottom graph shows the restored audio after processing with the Wiener
suppression rule using a window size of 2048 samples.

3.3 Residual Noise Conditioning

For the purposes of high quality audio restoration, the key to noise suppres-
sion performance is not the amount of noise reduction, but the nature of the
residual noise (along with the amount of distortion to the signal, of course).
The most noticeable effect from simple spectral noise suppression is what’s
known as musical noise. This effect is caused by the randomness in the
STFT of the noise. From subframe to subframe, the noise power in a given
bin randomly fluctuates around its average. In bins with low signal power,
the fluctuations can result in wildly varying estimates of signal to noise ratio,
and hence gain. The name for the phenomenon comes from the pure tones
that randomly appear in a subframe, creating a rapid, pseudo-musical “tin-
kling” effect. This effect is evident in the Wiener-processed restoration16 of
the white-noise corrupted17 .

16hisssamps/iwwien.wav (local, web)
17hisssamps/iwhiss.wav (local, web)
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Figure 15: Top: clean audio. Middle: corrupted with white noise. Bottom:
after Wiener processing
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One method used to reduce musical noise is to overestimate the noise
power by a factor α. This has the effect of clamping more of the low-
amplitude bins to zero. A random fluctuation in a noise component is less
likely to push above the clamping threshold. Of course, the overestimation
also introduces more signal distortion in bins with significant signal power.
Thus, α trades off signal fidelity to reduce musical noise. Typical values for
α are between 3 and 6 [9].

Another simple method to reduce the effect of musical noise is to introduce
a noise floor to conceal colored residual noise. This is usually achieved by
placing a lower limit β on the filter gain. While increasing the amount of
residual noise, the result may sound much more natural. Typical values for
β are between 0.01 and 0.1 for processing high noise levels [9].

Both noise overestimation and a noise floor can easily be included in the
noise suppression rules discussed. The Wiener filter gain, for example, would
become:

G(p, ωk) = max

(
β , 1− α

Q(p, ωk)

)
The result18 of Wiener processing with α = 5 and β = 0.1, exhibits less
of the musical effect, at the cost of reduced noise attenuation and increased
distortion.

These two simple methods for reducing musical noise trade signal dis-
tortion or residual noise for a reduction of the musical noise effect. More
sophisticated methods try to take advantage of the characteristics of the
STFT bins over time. One observation is that the power of noise fluctuates
randomly from subframe to subframe, while the signal components tend to
have a smoother envelope. Various types of smoothing can be applied to the
frequency bins in the time dimension. One simple method is to average the
magnitude of a component across several subframes. This smoothed estimate
is used to compute the signal to noise ratio, providing a more stable gain. A
method which is found to have a less severe effect on the signal envelope is
to take a median amplitude rather than a mean [8].

3.4 Ephraim and Malah noise reduction

Ephraim and Malah [7] developed a minimum mean squared error estimator
for signal amplitude. The resulting suppression rule is observed to result in

18hisssamps/iwwien-50-10.wav (local, web)
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a relatively colorless residual.

3.4.1 MMSE spectral attenuation

When constructing their estimator, Ephraim and Malah distinguish between
two quantities.19 Rprio is the a priori estimate for the power signal to noise
ratio, and Rpost is the a posteriori power signal to noise ratio.

In their model, the a priori distribution of the STFT coefficients of both
the signal and noise are assumed known. In this case, Rprio is defined as:

Rprio(p, ωk) ,
Sx(p, ωk)

Sd(p, ωk)

where Sx(p, ωk) is the a priori expected signal power, and Sd(p, ωk) is the
a priori expected noise power. In practice, the noise characteristics are con-
sidered stationary and Sd(ωk) is estimated as before. The signal characteris-
tics are also estimated from the data, as will be explained later.

The a posteriori ratio is estimated from the observed STFT:

Rpost(p, ωk) ,
|Y (p, ωk)|2

Sd(p, ωk)
− 1

Observe that when the noise is considered stationary, Rpost is simply Q from
(6) minus 1.

The spectral attenuation for the Ephraim and Malah noise suppression
rule is a function of these two quantities (with implicit dependence on p and
ωk):

G(p, ωk) =

√
π

2

√(
1

1 +Rpost

)(
Rprio

1 +Rprio

)
M

[
(1 +Rpost)

(
Rprio

1 +Rprio

)]
(7)

where M is a function defined as:

M[θ] = exp

(
−θ

2

)[
(1 + θ)I0

(
θ

2

)
+ θI1

(
θ

2

)]
where I0 and I1 are the modified Bessel functions of zero and first order,
respectively.

19We use the formulation from [3], which is slightly different but equivalent to [7]

31



To get an idea of the behavior of this suppression rule, we will compare
it to the Wiener and power spectral subtraction rules. Figure 16 plots the
gain of the two traditional rules against Rpost. Figure 17 plots the gain of the
Ephraim and Malah rule versus Rprio, for three different values of Rpost. In
Figure 17, the dominant parameter is Rprio. For values of Rpost greater than
20 dB or less than -20 dB, the gain curves don’t differ much from the 20 dB
curves. Notice that in the left half of Figure 17, the curve for Rpost = -20
dB looks very much like the curve for power subtraction (although the power
subtraction curve is a function of Rpost rather than Rprio). Similarly, the
curve for Rpost = 20 dB looks very much like the curve for the Wiener rule.
When we plot the gain for the Ephraim and Malah rule with Rpost = Rprio

(Figure 18), the curve looks very much like power subtraction throughout
the plot.

The value of Rprio(p, ωk) must be estimated from the data. One method
is to recursively combine the best previous estimate for the signal to noise
ratio (as evidenced by the gain used) with weight α, with the a posteriori
SNR with weight 1− α. Thus, we have:

Rprio = α
|G(p− 1, ωk)Y (p− 1, ωk)|2

Sd(ωk)
+ (1− α)P [Rpost(p, ωk)]

where P [x] = max(x, 0). The expression |G(p − 1, ωk)Y (p − 1, ωk)|2 is the
power of the restored signal in the previous subframe. The choice of α will
be discussed later.

In the formulation described above, Ephraim and Malah assume that
a signal is present. They also consider a model where uncertainty about
signal presence is included. A parameter q representing the probability that
a signal is not present is added, and the formulas for Rprio and G are adjusted
to reflect this. See [7] for details.

3.4.2 Analysis

Cappé has performed some analysis [3] which explains how the Ephraim and
Malah method reduces the musical noise effect. The first reason is in the
use of Rprio as the dominant parameter. In frequency bins with no signal
component, the Rprio resembles a smoothed version of the wildly fluctuating
Rpost. This smoothing reduces the musical noise. When significant signal
is present, Rprio follows Rpost with very little smoothing. This lessens the
distortion of the signal. If α is chosen to be very close to one, the smoothing
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Figure 18: Gain curves for power subtraction and Ephraim and Malah rules
with Rprio = Rpost

of noise-only sections is increased (reducing musical noise), but the transi-
tion to less smoothing happens slower (increasing the signal distortion). If
signal presence is not considered, the recommended value of α is 0.98. If an
uncertainty of q = 0.2 is modeled, the recommended value of α is 0.99.

The smoothing effect described above is also observed if the Wiener sup-
pression rule is used as a function of Rprio rather than Rpost. The Ephraim
and Malah rule (7) exhibits another effect. Consider again Figure 17. Notice
on the left side (where Rprio is low – implying low signal levels) that high val-
ues of Rpost yield increased attenuation. Thus when the instantaneous value
of Rpost disagrees with the smoother Rprio, increased suppression is applied.
This effect further reduces musical noise.

Some musical noise may still remain after processing with the Ephraim
and Malah method. Cappé suggests to constrain Rprio to be greater than a
threshold Rmin. In this case, the noise power reduction in noise only bins is
approximately 1/Rmin. Thus, residual noise can be used to mask the musical
noise effect.

Ephraim and Malah processing was performed on the artificial Gaussian
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white noise sample. The standard procedure was performed with α = 0.98
for values of Rmin of 020 and 0.0621 . The uncertainty-modeling procedure
was performed with α = 0.99 and q = 0.2 for values of Rmin of 022 and
0.01623 . Both models reduce the musical noise phenomenon, however the
second model yields significantly less colored noise than the original model.
For this example audio, the Ephraim and Malah method seems to produce
an echo-like effect with certain tones. Further investigation will be necessary
to understand this effect.

3.5 Demonstration

To see the behavior of the described noise suppression with real degraded ma-
terial, hiss reduction was performed on digital recordings made from a mag-
netic tape source. The original recordings were made outdoors on consumer
grade audio tape with an inexpensive internal-microphone tape recorder. All
processing was done using the Ephraim and Malah method with α = 0.99,
q = 0.2, Rmin = 0.016, a block size of 2048 samples, and an overlap factor of
4.

The first example [12] features a solo female voice (accompanied by cricket
chirps). The original sample24 contains significant broadband noise. The
restoration25 yields a much reduced, natural-sounding residual without no-
ticeable signal distortion.

It has been observed [4] that low-level, lower-frequency signals compo-
nents are more likely to be decimated by spectral attenuation than higher
frequency components. In the second example [13], the female vocalist from
the previous example is joined by a lower level, lower-frequency male voice.
The original26 exhibits the same kind of noise as the previous example.
The restoration27 again is successful in strongly reducing the noise, while
preserving the deeper voice.

20hisssamps/iwem.wav (local, web)
21hisssamps/iwem-06.wav (local, web)
22hisssamps/iwemq.wav (local, web)
23hisssamps/iwemq-016.wav (local, web)
24source/gma-letter.wav (local, web)
25hisssamps/gma-letter-emq-016.wav (local, web)
26source/gma-utah.wav (local, web)
27hisssamps/gma-letter-emq-016.wav (local, web)
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3.6 Future Directions

Hiss reduction is a very subjective process, and there is a lot of room for
tuning the methods described here. In particular, it would be interesting to
explore additional methods for smoothing the random noise fluctuations, or
performing time domain signal separation across the STFT bins.

Hoeldrich and Lorber [9] have added additional parameters to the meth-
ods described here, and additionally consider perceptual frequency masking
when deciding which bins to attenuate. Perceptual criteria could play a very
useful part in improving hiss reduction.

One way to improve the automation of these methods would be to au-
tomatically identify noise-only sections of input audio. Such an algorithm
should be robust to different noise and signal characteristics. Time series
modeling might aid in the identification of desired audio signal presence.

4 Conclusion

This paper has explored several methods for click removal and hiss reduc-
tion. Excellent results were demonstrated for click removal using a hybrid
autoregressive/sinusoidal basis model. Clicks were detected by thresholding
prediction error, and were removed using least squares interpolation. Excel-
lent results for hiss reduction were also demonstrated. Natural-sounding hiss
reduction was achieved by using the Ephraim and Malah suppression rule for
short-time spectral attenuation.

A Audio Samples and Program Code

Demonstration audio samples are referenced in footnotes throughout this
paper. If you are reading this online, you may be able to access the files
either locally or from the Internet by clicking on the “local” or “web” links,
respectively. Alternatively, you can find an index to the samples locally as
audio samples.html or on the web as http://jnuzman.github.io/audio-restoration-2004/
audio_samples.html.

All the experiments performed in this paper were implemented in code
running under Octave [14], a high-level language for numerical computations.
Specifically, Octave version 2.1.57 was used along with the Octave-Forge [15]
distribution 2004.02.12. All the code used for this paper is available either
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locally with this document as program code.html or on the web as http:

//jnuzman.github.io/audio-restoration-2004/program_code.html.
A gzip’ed tar archive, including this document along with all audio sam-

ples and program code, is available at http://jnuzman.github.io/audio-restoration-2004/
audio.tar.gz.
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